On Random Binary Trees

نویسندگان

  • Gerald G. Brown
  • Bruno O. Shubert
چکیده

A widely used class of binary trees is studied in order to provide information useful in evaluating algorithms based on this storage structure. A closed form counting formula for the number of binary trees with n nodes and height k is developed and restated as a recursion more useful computationally . A generating function for the number of nodes given height is developed and used to find the asymptotic distribution of binary trees. An asymptotic probab ility distribution for height given the number of nodes is derived based on equally likely binary trees. This is compared with a similar result for general trees. Random binary trees (those resulting from a binary tree sorting algorithm applied to random strings of symbols) are counted in terms of the mapping of permutations of n symbols to binary trees of height k. An explicit formula for this number is given with an equivalent recursive definition for computational use. A generating function is derived for the number of symbols given height. Lower and upper bounds on random binary tree height are developed and shown to approach one another asymptot ically as a function of n, providing a limiting expression for the expected height. The random binary trees are examined further to provide expressions for the expectations of the number of vacancies at each level, the distribution of vacancies over alI levels. the comparisons required for insertion of a new random symbol, the fraction of nodes occupied at a particular level. the number of leaves, the number of single vacancies at each level, and the number of twin vacancies at each level. A random process is defined for the number of symbols required to grow a tree exceeding any given height. Finally. an appendix is given with sample tabulations and figures of the distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Generating Random Binary Trees a Survey Generating Random Binary Trees a Survey Generating Random Binary Trees a Survey Erkki Mm Akinen

This paper surveys algorithms for generating unbiased random binary trees. There exist several linear time algorithms. The best algorithms use only integers of size On to generate binary trees on n nodes.

متن کامل

A New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity

Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...

متن کامل

On the first variable Zagreb index

‎The first variable Zagreb index of graph $G$ is defined as‎ ‎begin{eqnarray*}‎ ‎M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}‎, ‎end{eqnarray*}‎ ‎where $lambda$ is a real number and $d(v)$ is the degree of‎ ‎vertex $v$‎. ‎In this paper‎, ‎some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...

متن کامل

Ideals in a Forest, One-way Infinite Binary Trees and the Contraction Method

The analysis of an algorithm by Koda and Ruskey for listing ideals in a forest poset leads to a study of random binary trees and their limits as infinite random binary trees. The corresponding finite and infinite random forests are studied too. The infinite random binary trees and forests studied here have exactly one infinite path; they can be defined using suitable size-biazed Galton–Watson p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1984